Non‐autonomous overgrowth by oncogenic niche cells: Cellular cooperation and competition in tumorigenesis
نویسندگان
چکیده
Tumor progression is classically viewed as the Darwinian evolution of subclones that sequentially acquire genetic mutations and autonomously overproliferate. However, growing evidence suggests that tumor microenvironment and subclone heterogeneity contribute to non-autonomous tumor progression. Recent Drosophila studies revealed a common mechanism by which clones of genetically altered cells trigger non-autonomous overgrowth. Such "oncogenic niche cells" (ONCs) do not overgrow but instead stimulate neighbor overgrowth and metastasis. Establishment of ONCs depends on competition and cooperation between heterogeneous cell populations. This review characterizes diverse ONCs identified in Drosophila and describes the genetic basis of non-autonomous tumor progression. Similar mechanisms may contribute to mammalian cancer progression and recurrence.
منابع مشابه
Loss of the Polycomb group gene polyhomeotic induces non-autonomous cell overproliferation.
Polycomb group (PcG) proteins are conserved epigenetic regulators that are linked to cancer in humans. However, little is known about how they control cell proliferation. Here, we report that mutant clones of the PcG gene polyhomeotic (ph) form unique single-cell-layer cavities that secrete three JAK/STAT pathway ligands, which in turn act redundantly to stimulate overproliferation of surroundi...
متن کاملDev108092 4729..4739
Oncogenic mutations in Ras deregulate cell death and proliferation to cause cancer in a significant number of patients. Although normal Ras signaling during development has been well elucidated in multiple organisms, it is less clear how oncogenic Ras exerts its effects. Furthermore, cancers with oncogenic Ras mutations are aggressive and generally resistant to targeted therapies or chemotherap...
متن کاملBio012815 1..16
The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cel...
متن کاملBio012815 1024..1039
The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cel...
متن کاملCooperation of the BTB-Zinc finger protein, Abrupt, with cytoskeletal regulators in Drosophila epithelial tumorigenesis
The deregulation of cell polarity or cytoskeletal regulators is a common occurrence in human epithelial cancers. Moreover, there is accumulating evidence in human epithelial cancer that BTB-ZF genes, such as Bcl6 and ZBTB7A, are oncogenic. From our previous studies in the vinegar fly, Drosophila melanogaster, we have identified a cooperative interaction between a mutation in the apico-basal cel...
متن کامل